If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2-24=16
We move all terms to the left:
9v^2-24-(16)=0
We add all the numbers together, and all the variables
9v^2-40=0
a = 9; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·9·(-40)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*9}=\frac{0-12\sqrt{10}}{18} =-\frac{12\sqrt{10}}{18} =-\frac{2\sqrt{10}}{3} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*9}=\frac{0+12\sqrt{10}}{18} =\frac{12\sqrt{10}}{18} =\frac{2\sqrt{10}}{3} $
| z/8=23 | | 18+3x=10+4x | | 12y+6=6(24+1) | | -3t+-12=t+8 | | (-5)=x^2-2x+5 | | -5y+1+3y=-15 | | -56=4v+4 | | -5(1/7x+3.4)=-21 | | 10(x+3)-(-9×-4)=x-5+3 | | -2u-2=-6(u-5) | | b2=b−19 | | 17x+2+70(9x+4)=180° | | 13+1.75t=-3 | | -7r+5=33 | | x5=x+47 | | 3d=40/12 | | 15y+8=5y-12 | | 3y-7=18y+38 | | -7+-2x=-2x | | -2u-2=-9(u-5) | | 1/2(x+4)+1/2(4x)+1/2(10x-10)=288 | | 3/7w-11=-4/3w | | 5x-81=-x+87 | | 10a=8a+1 | | 0=5s-2(50+s) | | 40=(3y-1)(2y+6) | | 22=-3n-8n | | 5(7x+3)=-300 | | 2(u-4)-3=-7(-2u+3)-4u | | 1.6x+0.25(16−x)=0.26(−16) | | 6v=8v+4 | | 11(x-2)=-8 |